
Cesar Velazquez & Rasmus Tamstorf

Introduction
This document describes the result of the conversion by Walt Disney Animation Studios (WDAS) of the Moana
Island Scene to use Pixar’s Universal Scene Description (USD) format. Additional information about the Moana
Island Scene based on the original release in JSON/OBJ format is available in the original README
document.

The main focus of this version of the USD data set is renderability, leaving the optimizations needed for
improved interactivity for future work. The goal has been to convert the original data using a combination of

https://wdas-datasets-disneyanimation-com.s3-us-west-2.amazonaws.com/moanaislandscene/island-README-v1.1.pdf
https://wdas-datasets-disneyanimation-com.s3-us-west-2.amazonaws.com/moanaislandscene/island-README-v1.1.pdf


files from the JSON/OBJ data set along with some data from the original production shot to produce USD files
capable of rendering final quality, single-pass images. As such it is not 100% equivalent to the JSON/OBJ
version, and this is by no means the only way to create a USD version of the Moana Island Scene. However,
we hope that it will satisfy many of the requests we have received for a USD version.

Even within our focus, it should be noted that this release does not represent a “perfect” USD file. The known
limitations are outlined at the end of this document.

License
Moana Island Scene
Copyright 2023 Disney Enterprises, Inc. All rights reserved.

1. Redistribution and use of this scene description, with or without modification, are permitted provided
that the following conditions are met:

2. The scene description or any part of it may only be used for research or software development
(including benchmarking) purposes.

3. Redistributions of this scene description or any part of it must include the above copyright notice, this
list of conditions and the following disclaimer.

4. The names “Disney”, “Walt Disney Pictures”, “Walt Disney Animation Studios” or the names of its
contributors may NOT be used to promote or to imply endorsement, sponsorship, or affiliation with
products developed or tested utilizing this scene description or benchmarking results obtained from this
scene description, without prior written permission from Walt Disney Pictures.

5. The name “Moana” may NOT be used except as required to identify the scene description, and the
scene description and its output may only be referred to as the “Moana Island Scene”.

Disclaimer: THIS SCENE DESCRIPTION IS PROVIDED BY WALT DISNEY PICTURES “AS
IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WALT DISNEY PICTURES BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SCENE DESCRIPTION, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.



Attribution
As with the JSON/OBJ version of the data set, attribution is not required, but it is appreciated. There is no
required format, but any attribution must not otherwise violate the terms of the license (e.g., no implied
endorsement). As an example, a caption accompanying an image generated from the data set may read:

"The USD version of the Moana Island Scene. Publicly available dataset courtesy of Walt Disney Animation
Studios.”

Citations in academic papers should follow the style of the journal. For journals following the APA citation style,
the suggested format is:

"Walt Disney Animation Studios (2022). Moana Island Scene USD (v2.0) [Data set].
Retrieved from https://www.disneyanimation.com/resources/moana-island-scene/"

Release History
v2.1 June 2023

Updates to apply MaterialBindingAPI where needed by USD 23.08 and higher.

v2.0 February, 2022
First USD version. Original data unchanged.

v1.1 August 9th, 2018
Various data updates, including:

● Better curve extrapolation for PBRT and update to PBRT sample code.
● Corrections to original curve degree data for all curve-based primitives.
● Fixed bad color translation for IronwoodA1 in PBRT data.
● Corrected a mistake in isPalmRig xgFrond curve definition.
● Removed isPandanusA xgTwigs primitive description after confirming it wasn’t present in

production shot.
● Added missing transformMatrix data to isIronwoodB json file.
● Fixed bad texture references in isGardeniaA.
● Generated better color for isPalmRig xgFrondsA from original material.
● Fixed duplicate meshname in isDunesA xgPalmDebris_archivePalmdead0004_mod.obj.
● Replaced duplicated json primitive files for isBayCedar_bonsai[ABC]_xgBonsai.json with actual

primitive files.
● Minor updates to documentation text to reflect above changes. Not all the changes are reflected

in the images in this document yet.

v1.0 July 4th, 2018
Initial Release.

http://technology.disneyanimation.com/islandscene
https://www.disneyanimation.com/resources/moana-island-scene/


Contents
The data for the USD version is provided in a single tar-file. This version has been authored with USD v21.08
and RenderMan v24.0. The content of the tar file is organized as follows :

island/ - Base directory. All paths are relative to this directory.
island/README-USD.pdf - This file.
island/License.txt - The license for this data set.

island/usd/island.usda - Base data set containing all assets and their associated material and geometry
information along with cameras and lights.

island/usd/islandPrman.usda - Base data set with modifications to the lights. These modifications are
specific to Pixar’s RenderMan and include :

● Environment maps use PRMan .tex formatted images.
○ islandsunVIS.png is replaced with islandsunCam.tex
○ islandsun.exr is replaced with islandsunEnv.tex

● The exposure values of the lights have been adjusted from the original values to better match Hyperion
renders.

● Visibility to the camera has been disabled for quad lights.

materials/material.usda - Contains the materials bound to geometry in the scene.
ref/ - Reference images rendered using USD+Renderman and Disney’s Hyperion renderer.
textures/ - All the textures used by the elements and lights. These are shared with the JSON/OBJ version of
the dataset.

Elements
Each element is organized into its own subdirectory containing all the material and geometric information for it.
All element and material descriptions are stored in ascii .usda files while mesh and XGen point instancer data
are stored in binary .usd files.

This is the common structure used to store elements on disk:

● element.usda
○ This file is referenced by island.usda and serves as the main entry point for the element. It will

typically contain instanced copies of the element which are placed around the island.
● instance.usda

○ This file is referenced by element.usda and serves as the main entry point for a single copy of
element. It references the element’s material and geometry usd files.

● materials.usda
○ Contains material definitions for all meshes within the element. There are currently two materials

definitions per element. One for RenderMan and another for USD’s Storm renderer.
● geometry.usda



○ Main entry point for the element’s geometry information. It references both standard geometry
and XGen based instance geometry.

● model.usd
○ This will typically contain non XGen based geometry for the element. Examples include tree

trunks and ground planes.
● xgenInstances

○ This directory contains both XGen point instance data as well as instance prototype files as well.
● archives

○ This subdirectory under xgenInstances typically holds prototype geometry used in instancing.

Common file directory structure for an element



Common USD file reference diagram for an element

Rendering
The original JSON/OBJ data set focused on PBRT as a test renderer. When looking at renderers to test this
USD data set with, we have been focusing on Pixar’s RenderMan which is freely available for non-commercial
purposes. It has native support for ptex texture files as well as shader support for Disney’s Principled Material.
Since it has a Hydra delegate, it also allows for interactive preview using Usdview which is convenient for
testing. In particular, this makes iterating through different light and material parameter values much easier.

Support for other renderers can be achieved by translating material definitions to the target renderer. Each
element has a materials.usda file which contains material definitions and binding information. Material
parameter values can be read by either traversing the PRMan material definition for each object, or by reading
the material attribute values located on each mesh (See the Materials Section).

https://renderman.pixar.com/


Usdview with RenderMan delegate for Hydra

Cameras
The seven cameras from the original release are included in the USD version and can be found in:

/island/usd/cameras.usda



shotcam - Renderman

rootsCam - Renderman

palmsCam - Renderman



grassCam - Renderman

birdseyeCam - Renderman



dunesCam - Renderman

beachCam - Renderman

Geometry
All mesh data has been converted to USD as UsdGeomMesh primitives with subdivision surfaces enabled.
Curves have been converted to USD as UsdGeomBasisCurves primitives. The curve “width” attribute has been
taken from the JSON files and adjusted along the length of the curve to visually match profile data from the
original shot.



Matching width profiles along curves

Hyperion Curves RenderMan Curves

XGen conversion
The Disney XGen data has been converted to USD as UsdPointInstancer primitives. Instance prototypes have
been created and put into the “Archives” subdirectory. For most instance prototypes, colors from ptex maps
have been baked into the displayColor attribute.

Geometry Fixes
Several of the meshes in the data set have been modified to avoid a render artifact we noticed in our tests. For
these meshes, we were seeing noisy “firefly” type render artifacts. Inspecting the meshes, we found the source
of the artifact to be overlapping faces causing a mismatch in the ptex faceId count between the mesh and the
ptex file. We corrected this by removing overlapping faces and vertices so the faceId count between the mesh
and ptex file matched each other. We looked at a few of the OBJ files from the original data set and found the
same error there. How this artifact shows up in renders depends on how the renderer handles the situation of
having too many geometry faces and not enough ptex faces.

Render artifact due to differing faceId
counts

Fixed Geometry



Duplicate points and overlapping geometry

Original geometry Close-up of leaf section

Overlapping point numbers visible Separating overlapping points



Materials

Materials used for the original production version of this dataset were built using Disney Animation’s proprietary
in-house toolset. To facilitate the transfer to USD, we have simplified these materials to a single, common
material called “BaseMaterial”, which is built around the Renderman shader PxrDisneyBsdf, an
implementation of Disney Animation’s Principled Shader.

BaseMaterial
BaseMaterial provides three render targets:

1. PxrDisneyBsdf - Renderman surface shader
2. PxrDisplacement - Renderman displacement shader
3. UsdPreviewSurface - Storm surface shader

Material input connections, such as baseColor, clearcoat, displacementMap, are connected to their
respective counterparts in the enclosed UsdShadeShader nodes. Input connection values are overridden by
each bound primitive’s values from the original JSON/OBJ data set and from the material palettes in the
original production shot.

Colorspace conversion from sRGB to Linear is approximated through the use of the PxrColorCorrect node for
Renderman shaders and through the use of the sourceColorSpace parameter on the HwPtexTexture node
for Storm. For BaseMaterial, colors are set through the Color3f input, “baseColor”.



BaseMaterial Renderman surface shading network

BaseMaterial Renderman displacement shading network

BaseMaterial Storm surface shading network



_class_BaseMaterial
BaseMaterial inherits from <_class_BaseMaterial> so that referencing contexts (e.g. shots, or just
super-layers of the island.usda) can add to or modify the definition inside a local </_class_BaseMaterial> prim,
without needing to edit this layer.

PtexBaseMaterial
The material PtexBaseMaterial, which is a descendant of BaseMaterial, is used in cases where a texture
map is provided. It overrides the shader color inputs to use a texture map instead of a constant color.

PtexBaseMaterial Renderman surface shading network

PtexBaseMaterial Storm surface shading network



Storing material attributes on the mesh

Primvars
To help support development on other renderers, a primvar attribute has been created on the mesh for each
attribute in the json file for that element.

materials.usda materials.json

Ptex Usage
Ptex maps have also been baked into the “displayColor” attribute on each mesh. This should allow renderers
that don’t support ptex to still have some access to color information.



Ptex in RenderMan Ptex in UsdPreviewSurface Ptex baked into displayColor
attribute

Displacement Shaders
Displacement shaders have been implemented for RenderMan materials. Displacement bounds have been set
as attributes on the mesh. All the displacement maps have been normalized between 0 and 1.

displacement mesh attributes:
● primvars:dispScale - displacement multiplier.
● primvars:dispOffset - shift displacement value to support negative displacement.
● primvars:displacementMin - minimum displacement value.
● primvars:displacementMax - maximum displacement value.
● primvars:displacementMap - path to displacement texture.

Displacement Shader Examples

isHibiscus displacement shaders on trunk bark isDunesA topsoil displacement



Textures
This USD data set still uses the ptex texture files from the original release with the following additions copied
over from the original shot:

● isHibiscus
○ Detail map for trunk bark.

● isKava
○ Ptex flood filled maps for branches, tallroot and smallroot meshes.

● isDunesA
○ Restored the original layers of displacement maps for topsoil0001.

● Environment maps
○ PRMan lat-long environment maps for skydome and camera.

element path

isHibiscus island/textures/isHibiscus/Color/trunk_base_geo_features.pts

isKava island/textures/isKava/Color/tallroot*.ptx
island/textures/isKava/Color/smallroot*.ptx
island/textures/isKava/Color/isKava_base_hBranch*.ptx

isDunesA island/textures/isDunesA/Displacement/topsoil0001_geo_duneSide.ptx
island/textures/isDunesA/Displacement/topsoil0001_geo_smushy.ptx

environment maps /island/textures/islandsunEnv.tex
/island/textures/islandsunCam.tex

Lights

Reproducing the lighting from the Hyperion render was particularly challenging. Beyond the placement of lights
in the scene, there were other lighting features which contributed heavily to the final look of the Hyperion
render. We were also limited in what lighting parameters we could adjust through the PRMan Hydra delegate.

We first translated lighting information from lights.json into lights.usda. Quad lights were converted into
UsdLuxRectLights. Color values have had a 2.2 gamma correction applied to them.

sky_dome_llc
The Hyperion dome light allowed for two environment maps to be used. One for lighting the scene and another
to be visible to the camera. In order to duplicate this in USD, the dome light, “sky_dome_llc”, was split into two
dome lights for the USD conversion:

● sky_dome_env_llc
○ This light is used to light the scene.
○ Visibility to the camera is disabled.

● sky_dome_cam_llc



○ This light is used as a background image for the camera.
○ Visibility to the camera is enabled.
○ This light excludes everything under /island

sky_dome_env_llc environment map sky_dome_cam_llc camera map

Light filters
The quad light “sun_quad_llc” contributed to the overall illumination and warmth of the lighting in Hyperion. To
add more interesting variations, Hyperion used the texture map “islandsun_cloudmap.ptx” as a cookie filter.
This allowed artists to “paint” the mountains in the background to receive less light and the palm trees in the
foreground to receive more light. While the USD API supported the creation of shader based light filters, the
HdPrman delegate currently does not support the translation of them to PRMan.

Hyperion - with cookie filter Hyperion - without cookie filter



“islandsun_cloudmap.ptx” image used for cookie filter.

en_SUN_refract
Hyperion also used photon mapping to illuminate and add caustics to the regions below the ocean surface.
While we were able to allow lights to illuminate the ocean floor using path-tracing, we were not able to enable
photon mapping to generate caustics. This was due to current limitations in enabling photon mapping in
PRMan through the HdPrman delegate. The light, “en_SUN_refract” was converted from the original
production shot. It was used for generating caustics underneath the ocean. While we were not able to get
caustics working, we have included this light and disabled it for future testing.



Element Notes
In this section we provide an overview of all the elements along with reference renders from both RenderMan
and the GL viewer in Usdview. Where relevant we also provide notes about changes that have been made
specifically for the USD release.

IsBayCedarA1
Model Variants

bonsaiA bonsaiB

bonsaiC isBayCedarA1

Element variants can be set in the instance primitive.



OsOcean
The ocean element from the previous pbrt/obj version of this dataset has been updated for this USD release. In
the original production shot, the ocean surface mesh and underwater volumetrics were procedurally generated
at render time. A cached version of that procedurally generated ocean surface mesh was included in the
previous pbrt/obj version of this data set and is included in this version as well. New to the USD version is the
addition of a volume element under the ocean surface. It is a hazy volume that extends from the water surface
to the ocean floor (see image below). It has been constructed to have a similar appearance as the original
volume element. The PxrDisneyBsdf shader node has been replaced with PxrSurface to take advantage of
some of the built-in diffuse transmission parameters.

osOcean volume



isBeach
Several meshes from this element suffered from render artifacts (see Geometry Fixes)

fireflies and other artifacts

Distant view Close-up view



isCoral
Model Variants

isCoral isCoral1 isCoral2

isCoral3 isCoral4 isCoral5

Model variants can be found in each element’s “geometry” primitive.



isDunesA
Topsoil0001 has a custom displacement shader that takes advantage of some additional displacement maps.

isDunesB

isGardeniaA



GL Viewer
RenderMan

isHibiscus
A detailed surface map and bump map has been added to the trunk geometry.



GL Viewer RenderMan

isHibiscusYoung
The previous PBRT/OBJ release did not include the trunk geometry for this element. The USD version has
been updated to include the trunk geometry.

GL Viewer RenderMan



isIronwoodA1
Re-exported curves from original production shot. Converted curves from polylines to basis curves. The needle
baseColor was re-extracted from the original production shot.

GL Viewer RenderMan

isIronwoodB
Re-exported curves from original production shot. Converted curves from polylines to basis curves.

GL Viewer RenderMan



isKava

GL Viewer RenderMan

isLavaRocks
We noticed that the OBJ version of this mesh differed from the Hyperion render. So we rebuilt it from the
original shot.

RenderMan - Initial conversion to USD (missing
geometry circled)

Hyperion render



RenderMan - Fixed mesh

GL Viewer RenderMan



isMountainA

GL Viewer RenderMan

isMountainB

GL Viewer RenderMan



isNaupakaA

GL Viewer RenderMan

isPalmDead

GL Viewer RenderMan



isPalmRig
The PxrDisneyBsdf shader node bound to the frond leaves has been replaced with PxrSurface to take
advantage of the diffuse transmission parameters.

GL Viewer RenderMan

isPalmRig model variants (4/34)

Variants can be set in each element’s “geometry” primitive.



isPandanusaA
We went back to the original XGen definition for the leaves to better match the tapered width for each curve.

GL Viewer
RenderMan



Limitations and Future Work
The conversion of the Moana Island Scene to USD has been a learning process for everyone involved. While
we feel we’ve met our initial goal of creating a data set capable of rendering a final quality image, there is still
room for improvement in the future.

The current data set is focused on final rendering. Future versions could take advantage of the USD “Purpose”
attribute to offer a data set that is also optimized for interactive viewing. This would most likely mean doing
another pass on each element to further optimize it for reduced complexity, memory usage and load times.
Included in this optimization would be restructuring the data to allow wider usage of the “instanceable” attribute
to improve memory performance. The re-introduction of animated geometry is another potential upgrade for
this data set. As mentioned in Lights section, support in HdPrman for caustics and light filters would benefit
the overall look and feel of the renders.

Finally, we have focused on using RenderMan as the target renderer for this release, but we hope that it
provides a template for how to experiment with other renderers.

Acknowledgements
We wish to thank all those who lent their valuable time and expertise to this project.

Ray Haleblian
David Aguilar
Shaila Haque
Heather Pritchett
Ricky Rieckenberg

Dan Teece
Mark Lee
Matthew Willams
Joe Longson
F. Sebastian Grassia

Pixar’s USD team
Pixar’s RenderMan team
Blue Sky Studios
SideFX Software


